
OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 1 of 31

The Wildcard Side of SAS

A 10 Minute SAS 9 Tech Tip

presented by:

Winfried Jakob, Senior Analyst, Data Quality

Canadian Institute for Health Information

®

®

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 2 of 31

Alternate Title:

Pattern Matching in SAS 9

using

Perl Regular Expressions

®

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 3 of 31

Agenda
• Definition of “Pattern Matching” and

“Regular Expressions”

• The Mechanics of Pattern Matching in SAS 9 by
Example

• Regular Expression Basics

• “The Regex Coach” - A Learning Tool

• A More Advanced Example

• How to Get Started

• Final Words of Wisdom...

®

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 4 of 31

Definition 1: Pattern Matching

“Pattern matching enables you to search for and
extract multiple matching patterns from a character
string in one step, as well as to make several
substitutions in a string in one step.”¹

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 5 of 31

Definition 2a: Regular Expressions

“Regular expressions are a pattern language
which provides fast tools for parsing large amounts

of text. Regular expressions are composed of
characters and special characters that are called

metacharacters.”¹

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 6 of 31

Definition 2b: Regular Expressions

“Perl's 'regular expressions' give you a simple
language to search for patterns, extract patterns from

strings, and even change text that matches your
patterns. This is invaluable for all manner of text

manipulation, including validation, text replacement,
and string testing. With the advent of SAS 9, the

power of Perl's regular expressions is now available
in the DATA step.”²

®

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 7 of 31

The Mechanics of Pattern Matching

Example 1.1 String Validation

Logical Steps:

1. Define a search pattern/regular expression
2. Compile the regular expression
3. Use the regular expression to find matches

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 8 of 31

Example 1.1 String Validation

Listing of Example 1 and 2 Data
Obs Text
 1 Ms. Winifred Jacob
 2 Winfred Jakob
 3 Wyn Fried Jakob
 4 Winfired Jakob
 5 Winfried Jakob
 6 Winfried Jakob
 7 Winfried Jakob
 8 Winfried Jakob
 9 Winfried Jakob
 10 WinfriedJakob

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 9 of 31

Example 1.1 String Validation

data _null_;

 set Example1; * Read Example data *;

 Pattern = "/winfried jakob/i"; * Define PRX *;

 PRX = prxparse(Pattern); * Compile PRX *;

 Match_Result = prxmatch(PRX,Text); * Search for PRX *;

 if Match_Result eq 0 then Message="No Match: ";

 if Match_Result gt 0 then Message="MATCH in: ";

 if _N_ eq 1 then do;

 putlog "The PRX pattern is: " Pattern /;

 end;

 putlog "Obs " _n_ 2.0 " " Message " " Text $char20. /;

run;

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 10 of 31

Example 1.1 String Validation

The PRX pattern is: /winfried jakob/i

Obs 1 No Match: Ms. Winifred Jacob
Obs 2 No Match: Winfred Jakob
Obs 3 No Match: Wyn Fried Jakob
Obs 4 No Match: Winfired Jakob
Obs 5 MATCH in: Winfried Jakob
Obs 6 MATCH in: Winfried Jakob
Obs 7 No Match: Winfried Jakob
Obs 8 No Match: Winfried Jakob
Obs 9 No Match: Winfried Jakob
Obs 10 No Match: WinfriedJakob

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 11 of 31

Example 1.2 String Validation

data _null_;

 ... same code as before ...

 Pattern = "/winfried\s*jakob/i"; * Define PRX *;

 PRX = prxparse(Pattern); * Compile PRX *;

 Match_Result = prxmatch(PRX,Text); * Search for PRX *;

 ... same code as before ...

run;

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 12 of 31

Example 1.2 String Validation

The PRX pattern is: /winfried\s*jakob/i

Obs 1 No Match: Ms. Winifred Jacob
Obs 2 No Match: Winfred Jakob
Obs 3 No Match: Wyn Fried Jakob
Obs 4 No Match: Winfired Jakob
Obs 5 MATCH in: Winfried Jakob
Obs 6 MATCH in: Winfried Jakob
Obs 7 MATCH in: Winfried Jakob
Obs 8 MATCH in: Winfried Jakob
Obs 9 MATCH in: Winfried Jakob
Obs 10 MATCH in: WinfriedJakob

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 13 of 31

Example 2.1 String Replacement

data _null_;

 ... same code as before ...

 Pattern = "s/\s*winfried\s*jakob/Winfried Jakob/i";

 PRX = prxparse(Pattern);

 Match_Result = prxmatch(PRX,Text);

 call prxchange(PRX,-1,Text);

 ... same code as before ...

run;

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 14 of 31

Example 2.1 String Replacement

PRX: s/\s*winfried\s*jakob/Winfried Jakob/i

Obs 1 No Match: Ms. Winifred Jacob
Obs 2 No Match: Winfred Jakob
Obs 3 No Match: Wyn Fried Jakob
Obs 4 No Match: Winfired Jakob
Obs 5 REPLACED: Winfried Jakob
Obs 6 REPLACED: Winfried Jakob
Obs 7 REPLACED: Winfried Jakob
Obs 8 REPLACED: Winfried Jakob
Obs 9 REPLACED: Winfried Jakob
Obs 10 REPLACED: Winfried Jakob

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 15 of 31

Example 3.1 String Extraction

Listing of Example 3 Data
Obs Text
 1 153 First Street
 2 4000 Kanata Avenue North
 3 6789 64th Ave
 4 4 Moritz Road
 5 99 Borderline St.
 6 7493 Wilkes Place
 7 70 Sherring Court
 8 5 Goldridge Crescent
 9 7020 Yonge Street
 10 1 Buenaventura Pl. East

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 16 of 31

Example 3.1 String Extraction
data _null_;

 ... same code as before ...

 Pattern1 = "/\bavenue|\bave|\bcourt|\bcrt|";

 Pattern2 = "\bdrive|\bdr|\broad|\brd|\bstreet|\bst/i";

 PRX = prxparse(Pattern1 !! Pattern2);

 call prxsubstr(PRX, Text, position, length);

 if position ne 0 then do;

 match = substr(Text, position, length);

 putlog "Obs " _n_ 2.0 " " match:$QUOTE. "found in " Text:$QUOTE. /;

 end;

 else if position eq 0 then do;

 putlog "Obs " _n_ 2.0 " NO MATCH found in " Text:$QUOTE. /;

 end;

run;

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 17 of 31

Example 3.1 String Extraction

PRX: /\bavenue|\bave|\bcourt|\bcrt|
 \bdrive|\bdr|\broad|\brd|\bstreet|\bst/i

Obs 1 "Street" found in "153 First Street"
Obs 2 "Avenue" found in "4000 Kanata Avenue North"
Obs 3 "Ave" found in "6789 64th Ave"
Obs 4 "Road" found in "4 Moritz Road"
Obs 5 "St" found in "99 Borderline St."
Obs 6 NO MATCH found in "7493 Wilkes Place"
Obs 7 "Court" found in "70 Sherring Court"
Obs 8 NO MATCH found in "5 Goldridge Crescent"
Obs 9 "Street" found in "7020 Yonge Street"
Obs 10 NO MATCH found in "1 Buenaventura Pl. East"

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 18 of 31

Regular Expression Basics

Concatenation:

• The simplest form of a regular expression is simply
a string of characters

Examples:

/Regular Expressions/
/Yonge Street/
/500 Dollars/
/xyz/
/1000/

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 19 of 31

Regular Expression Basics

Metacharacters:

• Some characters have a special meaning:
{ } [] () ^ $. | * + ? \

• To find a string that contains any of those, you
must prefix them with a backslash (\)

Example:

 To find the string: “What is it?”
 you must specify: /”What is it\?”/

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 20 of 31

Regular Expression Basics

More Metacharacters:
. the period matches any one character
\w a 'word'-like character, matches a-z, A-Z, 0-9, _
\d a 'digit' character, matches numbers 0 to 9
\s a 'space'-like character, matches any whitespace

character, including the space and the tab
\b a word boundary, the position between a 'word'

character and a 'non-word' character

Examples:
/\d\d:\d\d:\d\d/ matches the hh:mm:ss time format
/\bave/ does NOT match Buenaventura

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 21 of 31

Regular Expression Basics

Iterators:

* matches 0 or more occurrences of preceding pattern
+ matches 1 or more occurrences of preceding pattern
? matches 0 or 1 occurrences of preceding pattern
{k} matches k occurrences of preceding pattern
{n,m} matches at least n and at most m occurrences of
 preceding pattern

Example: /a{1,4}/ matches a, aa, aaa, aaaa

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 22 of 31

Regular Expression Basics

Alternation and Grouping:

• A vertical bar separates alternatives

Example: /Avenue|Ave|Boulevard|Blvd/

• Parentheses are used to define the scope and
precedence of the operators

Example:
/H(ä|ae?)ndel/ matches Handel, Händel, and Haendel

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 23 of 31

Regular Expression Basics

Character Classes:

• You can express single-character alternatives by
using a character class.

• Character classes are denoted by square brackets,
with the set of characters to be possibly matched
inside.

Example: /[abc]ar/ matches aar, bar, and car

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 24 of 31

“The Regex Coach”³

• A great learning
tool

• Free download

• Free use

• Highly
recommended

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 25 of 31

A More Advanced Example: Problem

Check if a 6 character Postal Code follows these 3 rules:

• Postal Code must be in the format ANANAN. The
first character must not be D, F, I, O, Q, U or W.

• Postal Code can also be a right-aligned mini postal
code in the format: ' AA' (4 leading spaces)

• Postal Code can be 999999 for 'Unknown'.

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 26 of 31

A More Advanced Example: Solution

 Construct 3 patterns and combine them as
alternatives using the vertical bar:

• Pattern1 = "[ABCEGHJ-NPRSTVXYZ]\d[A-Z]\d[A-Z]\d";

• Pattern2 = " [A-Z][A-Z]";

• Pattern3 = "999999";

PRX =

prxparse("/" !! Pattern1 !! "|" !! Pattern2 !! "|" !! Pattern3 !! "/");

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 27 of 31

A More Advanced Example: Result

Obs 1 MATCH in: K2K2T1
Obs 2 No Match: KKK2T1
Obs 3 No Match: K2K211
Obs 4 No Match: K+K2T1
Obs 5 No Match: FL
Obs 6 MATCH in: FL
Obs 7 No Match: F
Obs 8 No Match: 99999
Obs 9 No Match: 999 99
Obs 10 MATCH in: 999999

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 28 of 31

How to Get Started
• Download this slide show from the OASUS website

• Get SUGI 29 Article from Internet:

David L. Cassell, Design Pathways, Corvallis, OR:
“The Perks of PRX...”²

• Download and install “The Regex Coach”³

• Work through the article and try out your own ideas

• Learn by doing – and expect surprises!

4

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 29 of 31

Final Words of Wisdom...

Regular Expressions are extremely powerful, but they are
not the best solution for every problem.

Learn enough to know when they are appropriate, and
when they will simply cause more problems than they
solve.

 Some people, when confronted with
 a problem, think “I know, I'll use
 regular expressions.”
 Now they have two problems.
 Jamie Zawinski,
 in comp.lang.emacs

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 30 of 31

References
1) Technical Support article: “Pattern Matching Using SAS
 Regular Expressions (RX) and Perl Regular Expressions (PRX)”

 http://support.sas.com/91doc/getDoc/lrdict.hlp/a002288677.htm

2) Cassell, David L. (2004), “The Perks of PRX...”, SUGI Proceedings, 2003

 http://www2.sas.com/proceedings/sugi29/129-29.pdf

3) “The Regex Coach” is available at: http://www.weitz.de/regex-coach/

4) Ottawa Area SAS Users Society website: http://www.oasus.ca

Acknowledgements

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

The Perl language was designed by Larry Wall, and is available for public use under both the GNU
GPL and the Perl Copyleft..

Other brand and product names are registered trademarks or trademarks of their respective
companies.

http://support.sas.com/91doc/getDoc/lrdict.hlp/a002288677.htm
http://www2.sas.com/proceedings/sugi29/129-29.pdf
http://www.weitz.de/regex-coach/
http://www.oasus.ca/

OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 31 of 31

About the presenter

Winfried Jakob

Senior Analyst, Data Quality

Canadian Institute for
Health Information

495 Richmond Road, Suite 600
Ottawa, Ontario K2A 4H6
Canada

Phone: +1 (613) 694-6993
Fax: +1 (613) 241-8120
Email: wjakob@cihi.ca

http://www.cihi.ca

mailto:wjakob@cihi.ca
http://www.cihi.ca/

