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Alternate Title:
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Agenda
• Definition of “Pattern Matching” and             

“Regular Expressions”

• The Mechanics of Pattern Matching in SAS   9 by 
Example

• Regular Expression Basics

• “The Regex Coach” - A Learning Tool

• A More Advanced Example

• How to Get Started

• Final Words of Wisdom...
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Definition 1: Pattern Matching

“Pattern matching enables you to search for and 
extract multiple matching patterns from a character 
string in one step, as well as to make several 
substitutions in a string in one step.”¹
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Definition 2a: Regular Expressions

“Regular expressions are a pattern language 
which provides fast tools for parsing large amounts 

of text. Regular expressions are composed of 
characters and special characters that are called 

metacharacters.”¹
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Definition 2b: Regular Expressions

“Perl's 'regular expressions' give you a simple 
language to search for patterns, extract patterns from 

strings, and even change text that matches your 
patterns. This is invaluable for all manner of text 

manipulation, including validation, text replacement, 
and string testing. With the advent of SAS  9, the 

power of Perl's regular expressions is now available 
in the DATA step.”²

®
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The Mechanics of Pattern Matching

Example 1.1   String Validation

Logical Steps: 

1. Define a search pattern/regular expression
2. Compile the regular expression
3. Use the regular expression to find matches
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Example 1.1   String Validation

Listing of Example 1 and 2 Data
Obs    Text
  1    Ms. Winifred Jacob
  2    Winfred Jakob
  3    Wyn Fried Jakob
  4    Winfired Jakob
  5    Winfried Jakob
  6          Winfried Jakob
  7    Winfried  Jakob
  8    Winfried       Jakob
  9      Winfried   Jakob
 10        WinfriedJakob
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Example 1.1   String Validation

data _null_;
 
   set Example1; * Read Example data *;
 
   Pattern = "/winfried jakob/i";     * Define PRX *;
 
   PRX = prxparse(Pattern);           * Compile PRX *;
 
   Match_Result = prxmatch(PRX,Text); * Search for PRX *;
 
   if Match_Result eq 0 then Message="No Match: ";
 
   if Match_Result gt 0 then Message="MATCH in: ";
 
   if _N_ eq 1 then do;
 
      putlog "The PRX pattern is: " Pattern /;
 
   end;
 
   putlog "Obs " _n_ 2.0 " " Message " " Text $char20. /; 
 
run;
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Example 1.1   String Validation

The PRX pattern is: /winfried jakob/i
 
Obs  1 No Match:  Ms. Winifred Jacob
Obs  2 No Match:  Winfred Jakob
Obs  3 No Match:  Wyn Fried Jakob
Obs  4 No Match:  Winfired Jakob
Obs  5 MATCH in:  Winfried Jakob
Obs  6 MATCH in:        Winfried Jakob
Obs  7 No Match:  Winfried  Jakob
Obs  8 No Match:  Winfried       Jakob
Obs  9 No Match:    Winfried   Jakob
Obs 10 No Match:      WinfriedJakob
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Example 1.2   String Validation

data _null_;
 

   ... same code as before ...
 
   Pattern = "/winfried\s*jakob/i";   * Define PRX *;
 
   PRX = prxparse(Pattern);           * Compile PRX *;
 
   Match_Result = prxmatch(PRX,Text); * Search for PRX *;
 
   ... same code as before ... 
  
 
run;
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Example 1.2   String Validation

The PRX pattern is: /winfried\s*jakob/i
 
Obs  1 No Match:  Ms. Winifred Jacob
Obs  2 No Match:  Winfred Jakob
Obs  3 No Match:  Wyn Fried Jakob
Obs  4 No Match:  Winfired Jakob
Obs  5 MATCH in:  Winfried Jakob
Obs  6 MATCH in:        Winfried Jakob
Obs  7 MATCH in:  Winfried  Jakob
Obs  8 MATCH in:  Winfried       Jakob
Obs  9 MATCH in:    Winfried   Jakob
Obs 10 MATCH in:      WinfriedJakob
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Example 2.1   String Replacement

data _null_;
 

   ... same code as before ...
 
   Pattern = "s/\s*winfried\s*jakob/Winfried Jakob/i";
 
   PRX = prxparse(Pattern);           
 
   Match_Result = prxmatch(PRX,Text); 
 
   call prxchange(PRX,-1,Text);
 
   ... same code as before ... 
  
 
run;
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Example 2.1   String Replacement

PRX: s/\s*winfried\s*jakob/Winfried Jakob/i
 
Obs  1 No Match:  Ms. Winifred Jacob
Obs  2 No Match:  Winfred Jakob
Obs  3 No Match:  Wyn Fried Jakob
Obs  4 No Match:  Winfired Jakob
Obs  5 REPLACED:  Winfried Jakob
Obs  6 REPLACED:  Winfried Jakob
Obs  7 REPLACED:  Winfried Jakob
Obs  8 REPLACED:  Winfried Jakob
Obs  9 REPLACED:  Winfried Jakob
Obs 10 REPLACED:  Winfried Jakob
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Example 3.1   String Extraction

Listing of Example 3 Data
Obs    Text
  1    153 First Street
  2    4000 Kanata Avenue North
  3    6789 64th Ave
  4    4 Moritz Road
  5    99 Borderline St.
  6    7493 Wilkes Place
  7    70 Sherring Court
  8    5 Goldridge Crescent
  9    7020 Yonge Street
 10    1 Buenaventura Pl. East
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Example 3.1   String Extraction
data _null_;
 
   ... same code as before ...
 
   Pattern1 = "/\bavenue|\bave|\bcourt|\bcrt|"; 
  
   Pattern2 = "\bdrive|\bdr|\broad|\brd|\bstreet|\bst/i";
 
   PRX = prxparse(Pattern1 !! Pattern2);           
 
   call prxsubstr(PRX, Text, position, length);
 
   if position ne 0 then do;
 
      match = substr(Text, position, length);
 
      putlog "Obs " _n_ 2.0 "  " match:$QUOTE. "found in " Text:$QUOTE. /;
 
   end;
 
   else if position eq 0 then do;
 
      putlog "Obs " _n_ 2.0 "  NO MATCH found in " Text:$QUOTE. /;
 
   end;
  
run;
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Example 3.1   String Extraction

PRX: /\bavenue|\bave|\bcourt|\bcrt|
               \bdrive|\bdr|\broad|\brd|\bstreet|\bst/i
 
Obs  1 "Street" found in "153 First Street"
Obs  2 "Avenue" found in "4000 Kanata Avenue North"
Obs  3 "Ave" found in "6789 64th Ave"
Obs  4 "Road" found in "4 Moritz Road"
Obs  5 "St" found in "99 Borderline St."
Obs  6 NO MATCH found in "7493 Wilkes Place"
Obs  7 "Court" found in "70 Sherring Court"
Obs  8 NO MATCH found in "5 Goldridge Crescent"
Obs  9 "Street" found in "7020 Yonge Street"
Obs 10 NO MATCH found in "1 Buenaventura Pl. East"
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Regular Expression Basics

Concatenation:

• The simplest form of a regular expression is simply 
a string of characters

Examples:

/Regular Expressions/
/Yonge Street/
/500 Dollars/
/xyz/
/1000/
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Regular Expression Basics

Metacharacters:

• Some characters have a special meaning:
{ } [ ] ( ) ^ $ . | * + ? \

• To find a string that contains any of those, you 
must prefix them with a backslash (\)

Example:

      To find the string: “What is it?” 
      you must specify: /”What is it\?”/
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Regular Expression Basics

More Metacharacters:
. the period matches any one character
\w a 'word'-like character, matches a-z, A-Z, 0-9, _
\d a 'digit' character, matches numbers 0 to 9
\s a 'space'-like character, matches any whitespace 

character, including the space and the tab
\b a word boundary, the position between a 'word' 

character and a 'non-word' character

Examples:
/\d\d:\d\d:\d\d/ matches the hh:mm:ss time format
/\bave/ does NOT match Buenaventura
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Regular Expression Basics

Iterators:

*     matches 0 or more occurrences of preceding pattern
+     matches 1 or more occurrences of preceding pattern
?     matches 0 or 1 occurrences of preceding pattern
{k}     matches k occurrences of preceding pattern
{n,m}  matches at least n and at most m occurrences of
      preceding pattern

Example: /a{1,4}/ matches a, aa, aaa, aaaa
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Regular Expression Basics

Alternation and Grouping:

• A vertical bar separates alternatives

Example: /Avenue|Ave|Boulevard|Blvd/

• Parentheses are used to define the scope and 
precedence of the operators

Example: 
/H(ä|ae?)ndel/  matches  Handel, Händel, and Haendel



OASUS Spring Meeting - 2006-05-03 - The Wildcard Side of SAS - Page 23 of 31

Regular Expression Basics

Character Classes:

• You can express single-character alternatives by 
using a character class. 

• Character classes are denoted by square brackets, 
with the set of characters to be possibly matched 
inside.

   

Example:  /[abc]ar/   matches  aar, bar, and car
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“The Regex Coach”³ 

• A great learning 
tool

• Free download

• Free use

• Highly 
recommended
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A More Advanced Example: Problem

Check if a 6 character Postal Code follows these 3 rules:

• Postal Code must be in the format ANANAN. The 
first character must not be D, F, I, O, Q, U or W.

• Postal Code can also be a right-aligned mini postal 
code in the format:  '    AA' (4 leading spaces)

• Postal Code can be 999999 for 'Unknown'.
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A More Advanced Example: Solution

    Construct 3 patterns and combine them as 
alternatives using the vertical bar: 

• Pattern1 = "[ABCEGHJ-NPRSTVXYZ]\d[A-Z]\d[A-Z]\d";

• Pattern2 = "    [A-Z][A-Z]";

• Pattern3 = "999999";

PRX = 

prxparse("/" !! Pattern1 !! "|" !! Pattern2 !! "|" !! Pattern3 !! "/");  
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A More Advanced Example: Result

Obs  1 MATCH in:  K2K2T1
Obs  2 No Match:  KKK2T1
Obs  3 No Match:  K2K211
Obs  4 No Match:  K+K2T1
Obs  5 No Match:     FL
Obs  6 MATCH in:      FL
Obs  7 No Match:       F
Obs  8 No Match:  99999
Obs  9 No Match:  999 99
Obs 10 MATCH in:  999999
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How to Get Started
• Download this slide show from the OASUS website

• Get SUGI 29 Article from Internet:

David L. Cassell, Design Pathways, Corvallis, OR:
“The Perks of PRX...”²

• Download and install “The Regex Coach”³

• Work through the article and try out your own ideas

• Learn by doing – and expect surprises!

4
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Final Words of Wisdom...

Regular Expressions are extremely powerful, but they are 
not the best solution for every problem.
  
Learn enough to know when they are appropriate, and 
when they will simply cause more problems than they 
solve.
 
    Some people, when confronted with
    a problem, think “I know, I'll use 
    regular expressions.”
    Now they have two problems.
     Jamie Zawinski,
                         in comp.lang.emacs 
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