
Programming in Style

George Poirier

Background

• In IT business since 1982,
• Independent consultant since 1987,
• Worked for many government and private clients,
• Programming in SAS on-and-off since 1982,
• Use mainly Base SAS and SAS/AF.,
• Built over 30 SAS applications (> 1000 pgms) from scratch,

maintained/enhanced many more,
• From simple “reporting” applications to more complicated

“code generators” and “specification languages” written in
SAS.

• Seen many different styles over the years (good and bad).

Definition

• Style:
– “the distinguishing way in which something is done, said,

written, made, executed, etc.”,
– “the distinguishing character of a particular type of

writing”,
– “the way in which a particular literary work is

expressed”,
– “conventions followed by a publisher in using capitals,

hyphens, certain spelling, etc.”
(Webster's Encyclopaedic Dictionary)

Learn from others

• One way to improve your programming style is to borrow
(copy) the “best practices” from many other programmers.

• People actually like it when you borrow their code.
• Copying is one of the best ways to learn,
• Many of the good coding practices and styles have many

common features.
• Learn to distinguish between the good, the bad, and the ugly
• Principles of style are applicable to all languages, not just SAS

This presentation applies to production code only

A sample SAS program (pg. 1 of 2)

* ---- std-crs pgm;
* 2006-jul-31, jc, fbn const;
%LET Start='01-Sep-2008';
%LET End='31-Dec-2008';
filename Stds 'C:\Students.txt'; filename Tsts 'C:\Tests.txt';filename Scrs

'C:\TestScores.txt';
filename Crs 'C:\Courses.txt'; filename Tchrs 'C:\Teachers.txt';
data stds; infile stds;
input @1 sid 6. @8 snme $char30. @40 sadrs $char20.
@60 scit $char20. @90 stel $char12. @103 sstat 1.; if sstat=1 or sstat=1;
data Tests; infile Tsts;
input @1 cid $char6. @8 tstid $char8. @17 tstnm $char20. @38 tstdt $char11. @50 tstat 1.;
if tstat=1 & (&start < tstdt < &end);

data tstscrs;infile Scrs;
input @1 cid $char6. @8 tstid $char8. @17 sid 6. @25 ststscr 5.2;
if ststscr=. then ststscr=0;

proc sort data=tstscrs;by cid sid;
data crs; infile crs;
input @1 cid $char6. @8 crsnm $char30. @39 crslocn $char10. @49 tid $char6.
@56 crsenrol 4.; if crsenrol>0;

proc sort data=crs; by tid;
data tchrs; infile tchrs;

input @1 tid $char6. @8 tnm $char30. @40 offno $char5.

A sample SAS program (pg.2 of 2)

@46 Offtel $char12. @59 stat 1.;if stat=1; proc sort data=tchrs; by tid;
proc summary data=tstscrs; by cid sid; var ststscr;
output out=scav mean=scrsav;
data crsts; merge crs (IN=In1) Tchrs (IN=In2);by tid;if in1 & in2;
proc sort data=stds; BY sid;proc sort data=scav; BY SId;
data SA (KEEP=sid cid snme sadrs scit scrsav);

MERGE stds (IN=In1) Scav (IN=In2); BY sId; IF In1 & In2;
proc sort data=sa;BY cid; proc sort data=crsts;BY cid;
data rcddtls; MERGE sa (IN=In1) crsts (IN=In2); BY cid; if in1 and in2;

proc sort data=rcddtls;by sid cid;
run;
data _null_; set rcddtls; by sid cid; file print;
if first.sid then do;

nocrs=0; tmrks=0; savg=0;
put _page_; put / @15 'STUDENT ID:' @27 sid Z6. / @15 ' NAME:'
@27 snme $char20. / @15 ' ADDRESS:' @27 sadrs $char20. / @27
scit $char20. /// @15 'COURSE #' @25 'COURSE NAME' @55 'MARK' @65 'INSTR-NAME'
/ @15 70*'-';end;

nocrs + 1;tmrks+scrsav;
put / @15 cid $char6. @25 crsnm $char29. @55 scrsav 5.2 @65 tnm $char20.;
if last.sid then do; savg = ROUND(scrsav/nocrs,0.1);

put / @15 70*'-' / @38 'STUDENT AVERAGE:' @55 savg 4.1 / @15 70*'-';end;run;

A sample SAS Program

• What’s wrong with this program?
– Inadequate comments (re. none),
– Poor naming conventions used,
– Inconsistent or ‘no’ indentation,
– insufficient ‘white space’
– Poor grouping of functionally related code (e.g., sorts and

merges)
– Misleading code (few KEEPs or RUNs, multiple

statements per line)
– Not very readable (good candidate for File 13).

Basic Principles of Style

• Readability
– Use the 1-hour rule

• Maintainability
– Keep maintainability in mind at all times

• Standardization
– All your programs should be setup in a similar fashion

Readability

• Use of comments (style and approach)
• Naming conventions

– variable, file, constants, capitalization, etc.

• Code organization and layout conventions
– indentation, use of ‘white space’, order of statements,

• Key is readability and comprehension
• The 1-hour rule:

– If you cannot tell what the program does after a 1 hour review, it
probably needs to be re-written and/or re-commented.

Readability - Comments

• Use a standard header in every program
– Program name (with version)
– System or Application,
– Purpose, special notes, etc
– Author (very important)
– Change history (if no configuration software is being used)

• Identify every major step in the program
– it should explain ‘step-by-step’ what your program does.

• Identify the end of the program (code).

Readability - Comments

• Keep comments general.
• Make sure the comments and code agree.
• Don’t comment bad code, re-write it.
• Comment tricky code

– explain what the code is supposed to do

• Provide examples in the comments (if needed)
• Don’t keep commented code in the program

– create a new version

Reabability – Naming Conventions

• Prefixes, suffixes, mixed case vs. same case
• Dataset variables, local variables, constants, flags,

indicators, counters
• Capitalization of (SAS) keywords, constants, library

names, etc.
• File naming conventions

– Rename the file if the data changes (Prices, PricesSrtd,
PricesWgtd,..).

Readabiltiy - Code Layout

VERSION 1: (original code)
if eof=0 then do; grp=ing; dist=‘Ont’; rc+1; if flg_not=0

then gri=‘N’; end; else do; put @1 ‘n =‘ rc; end;

VERSION 2: (indentation, better, but still bad)
if eof=0 then do;

grp=ing; dist=‘Ont’; rc+1;
if flg_not=0 then
gri=‘N’; end;

else do;
put @1 ‘n =‘ rc; end;

Readabiltiy - Code Layout

VERSION 3: (DO-END lined up, better names, more space)
IF eof = 0 THEN
DO;
group = ingrp;
dstrct = ‘Ont’;
reccnt + 1;
IF flag_not = 0 THEN

groupincl = ‘N’;
END;

ELSE
DO;

put @1 ‘n =‘ reccnt;
END;

Readabiltiy - Code Layout
VERSION 4: Naming (vars., keywords, etc.), cleaner logic,

more obvious
IF _N_ = 1
THEN
District = ‘Ont’; /* -- All recs. are ‘Ont’ -- */

Group = InGroup;
RecordCount + 1;

IF IncludeFlag = EXCLUDED /* -- EXCLUDED = 0 -- */
THEN
GroupIncludedInd = ‘N’;

IF EndOfFile
THEN
PUT @1 ‘Number of Records Read = ‘ RecordCount 7.;

Standardization – Code Layout
• Group code together that goes together (e.g., MERGE)

/* -- */
/* STEP 12: MERGE REVISIONS FILE WITH WEIGHTS FILE */
/* TO APPLY WEIGHT FACTOR TO REVISED PRICES. */
/* -- */
PROC SORT DATA=Revisions

OUT=RevisionsSrtd;
BY QuarterId WeekId;

RUN;

PROC SORT DATA=BasicWeights
OUT=BasicWeightsSrtd;

BY QuarterId WeekId;
RUN;

DATA RevisionsWgtd (KEEP=QuarterId WeekId Price WeightFactor PriceWgtd);
MERGE RevisionsSrtd (IN=InRevisions)

BasicWeightsSrtd (IN=InBasicWeights);
BY QuarterId WeekId;

IF InRevisions AND InBasicWeights
THEN

PriceWgtd = Price * WeightFactor;
RUN;

Standardization - Code Layout

• Setup each program in your group (team, application,
project, division, etc.) in the same fashion.
– Standardize common approaches,
– Standard record layouts can be %Included,
– Read and edit input files first,
– Place outputs in proper order (e.g., Error rpt. before Final rpt.)

• Place all ‘global’ %INCLUDEs in the same place
– e.g., included macros

• Setup each data step in a similar fashion and order
– INFILE, FILE, SET, INPUT, RETAIN, etc.

Maintainability

• Use consistent indentation of code
– lineup DO; and END; statements

• Format your program to make it easier to read and
understand.
– Even for simple maintenance tasks, re-format the program so it will be

easier to maintain in the future.

• Break complicated equations into simpler steps,
• Use standard SAS functions, don’t write your own

– e.g, VERIFY, INDEX

Maintainability

• Write out input parameters
– to the log or to a more permanent file

• Edit your input file for unexpected values
– Don’t let your programs run with garbage.

• Check for developer errors
– Invalid values of internal codes, etc.

• Use the simplest, most appropriate language feature
for the task
– SELECT vs. IF-THEN-ELSE

• Print summary statistics for each major data step

Maintainability

• Use %INCLUDEs to re-use standard pieces of code
– Record layouts, report headers, etc.
– Like LEGO

• Use Macros to turbo charge your programs
– Allows others to reuse complicated code that they may not understand,
– Use them when appropriate

• Use LINK/RETURN like subroutines
– Don’t use it without the Return

• Ensure Macros and subroutines only do 1 thing,
• Write code to trap division by zero errors, missing values, etc.

Maintainability

• Many coding problems start with the format of the
data
– Input and output files

• Change the format of the data if you can
– Don’t write complicated code to process badly designed data files,
– see if the files can be changed first

• Sometimes it’s better to reformat the data on input to
make the program simpler
– Depends on the size and purpose of the program.

A sample SAS Program (Improved)
/* -- */
/* */
/* PROGRAM: SCHL_RPTS_REPORT_CARDS_V2_1.SAS */
/* */
/* SYSTEM : STUDENT MARKS AND REPORTS APPLICATION */
/* */
/* PURPOSE: TO PRINT STUDENT REPORT CARDS FOR A SPECIFIC SEMESTER */
/* */
/* NOTES : - ONLY CURRENT F/T AND P/T STUDENTS ARE SELECTED */
/* - MISSED TESTS ARE GIVEN A MARK OF ZERO */
/* */
/* USAGE : YOU MUST PROVIDE THE CORRECT SEMESTER START AND END DATES TO */
/* ENSURE THE CORRECT TESTS SCORES ARE SELECTED. */
/* */
/* AUTHOR : Joseph Consultant */
/* */
/* -------------------- MODIFICATIONS --------------------------------------- */
/* JC - Joseph Consultant, Fly-by-Night Software Inc. */
/* GLP - George L. Poirier, Autumn Group Inc. */
/* */
/* */
/* YY-MM-DD INIT VER ---------------- DESCRIPTION --------------------------- */
/* 06-07-31 JC 1.0 Created. */
/* 08-11-09 GLP 2.0 Updated and Reformatted to make it easier to read */
/* 08-11-10 GLP 2.1 Fixed bug with Student Avg. not displaying correct value */
/* */
/* -- */

Improved pgm. (cont’d)

/* ------ SEMESTER START AND END DATES (FRMT = DD-MMM-YYYY) ----------------- */
%LET SemesterStartDt ='01-Sep-2008';
%LET SemesterEndDt ='31-Dec-2008';

/* -- */
/* EXTERNAL FILE NAME DECLARATIONS */
/* */
/* -- */
FILENAME Students 'C:\Students.txt';
FILENAME Tests 'C:\Tests.txt';
FILENAME Scores 'C:\TestScores.txt';
FILENAME Courses 'C:\Courses.txt';
FILENAME Teachers 'C:\Teachers.txt';

Improved pgm. (cont’d)
/* -- */
/* STEP 1: READ STUDENTS FILE */
/* RETRIEVE NAME AND ADDRESS */
/* */
/* VALID VALUES OF StudentStatus: */
/* 1 = Current FT, */
/* 2 = Current PT, */
/* 3 = Dropped Out, */
/* 4 = Graduated */
/* -- */
DATA Students (KEEP=StudentId StudentName StudentAddress StudentCity);

INFILE Students;

INPUT @1 StudentId 6.
@8 StudentName $CHAR30.
@40 StudentAddress $CHAR20.
@60 StudentCity $CHAR20.
@90 StudentPhone $CHAR12.
@103 StudentStatus 1.;

IF StudentStatus IN(1 2);
RUN;

Improved pgm. (cont’d)

/* -- */
/* STEP 6: CALCULATE THE STUDENTS AVERAGE MARK PER COURSE */
/* (THE TEST SCORES ALL HAVE EQUAL WEIGHT) */
/* -- */
PROC SORT DATA=TestScores

OUT=TestScoresSrtd;
BY CourseId StudentId;

RUN;

PROC SUMMARY DATA=TestScoresSrtd;
BY CourseId StudentId;
VAR StudentTestScore;
OUTPUT OUT=StudentCourseAvgs

MEAN=StudentCourseAvg;
RUN;

Improved pgm. (cont’d)
/* -- */
/* STEP 7: GET NAME OF TEACHER FOR EACH COURSE */
/* */
/* -- */
PROC SORT DATA=Courses

OUT=CoursesSrtd;
BY TeacherId;

RUN;

PROC SORT DATA=Teachers
OUT=TeachersSrtd;

BY TeacherId;
RUN;

DATA CourseTeachers (KEEP=CourseId CourseName TeacherName OfficePhone);

MERGE CoursesSrtd (IN=InCourses)
TeachersSrtd (IN=InTeachers);

BY TeacherId;

IF InCourses AND InTeachers;

RUN;

Improved pgm. (cont’d)
/* -- */
/* STEP 8: MATCH STUDENT NAMES TO COURSE MARKS */
/* */
/* -- */
PROC SORT DATA=Students

OUT=StudentsSrtd;
BY StudentId;

RUN;

PROC SORT DATA=StudentCourseAvgs
OUT=StudentCourseAvgsSrtd;

BY StudentId;
RUN;

DATA StudentAverages (KEEP=StudentId CourseId StudentName
StudentAddress StudentCity StudentCourseAvg);

MERGE StudentsSrtd (IN=InStudents)
StudentCourseAvgsSrtd (IN=InCourseAvgs);

BY StudentId;

IF InStudents AND InCourseAvgs;

RUN;

Improved pgm. (cont’d)

/* -- */
/* STEP 9: ADD COURSE AND TEACHER INFORMATION TO STUDENT COURSE MARKS */
/* THIS FILE WILL CONTAIN ALL DATA REQUIRED FOR THE REPORT CARD */
/* -- */
PROC SORT DATA=StudentAverages

OUT=StudentAvgsSrtd;
BY CourseId;

RUN;

PROC SORT DATA=CourseTeachers
OUT=CourseTeachersSrtd;

BY CourseId;
RUN;

DATA ReportCardDetails (KEEP=StudentId StudentName StudentAddress StudentCity
CourseId CourseName TeacherName StudentCourseAvg);

MERGE StudentAvgsSrtd (IN=InStudentAvgs)
CourseTeachersSrtd (IN=InCourseTeachers);

BY CourseId;

IF InStudentAvgs AND InCourseTeachers;

RUN;

Improved pgm. (cont’d)

/* -- */
/* STEP 10: PRINT REPORT CARDS */
/* */
/* -- */
PROC SORT DATA=ReportCardDetails

OUT=ReportCardsSrtd;
BY StudentId CourseId;

RUN;

Improved pgm. (cont’d)
DATA _NULL_;

SET ReportCardsSrtd;
BY StudentId CourseId;

RETAIN NumCourses
TotalMarks 0;

/* ----- INITIAL PROCESSING (FOR EACH NEW STUDENT) ----- */
IF FIRST.StudentId
THEN

DO;
NumCourses = 0;
TotalMarks = 0;
StudentAvg = 0;

PUT _PAGE_;
PUT / @15 'STUDENT ID:' StudentId Z6.

/ @15 ' NAME:' StudentName $CHAR20.
/ @15 ' ADDRESS:' StudentAddress $CHAR20.
/ @27 StudentCity $CHAR20.

/// @15 'COURSE #'
@25 'COURSE NAME'
@55 'MARK'
@65 'INSTR-NAME'

/ @15 70*'-';
END;

Improved pgm. (cont’d)
/* ----- MAIN PROCESSING (EVERY COURSE RECORD) --------- */
NumCourses + 1;
TotalMarks + StudentCourseAvg;

PUT / @15 CourseId $CHAR6.
@25 CourseName $CHAR29.
@55 StudentCourseAvg 5.2
@65 TeacherName $CHAR20.;

/* ----- FINAL PROCESSING (PRINT OVERALL AVERAGE) ----- */
IF LAST.StudentId
THEN

DO;
StudentAvg = ROUND(TotalMarks / NumCourses, 0.1);
PUT / @15 70*'-'

/ @38 'STUDENT AVERAGE:‘
@55 StudentAvg 4.1

/ @15 70*'-';
END;

RUN;

/* ------------------- END OF PROGRAM --------------------------------------- */

Implementation

• Team Effort;
– Cannot determine a style by yourself (unless you work alone).
– What is readable to you is junk to someone else
– No one style is ideal for everyone.
– Each group should adopt their own style and enforce it.
– Don’t let the ‘lowest common denominator’ prevail

• Only way to get better is to conduct code/style reviews
– You want other people’s input

• Most coding problems are discovered in reviews
– Many are design based

• Don’t stop with your first attempt
– It’s an on-going process

Implementation

• Benefits;
– Simpler and faster coding,
– Easier testing and maintenance,
– Easier Impact assessments,
– Easier Estimating
– Better documentation

• can write a “code scanner” for comments
– Raises everyone’s skill level
– Allows better use of programming resources
– Increased productivity
– Less expensive development

Additional Reading
The Elements of Programming Style

B. W. Kernighan & P. J. Plauger, Addison-Wesley, 1978

The Elements of Style,
W. Strunk, Jr. & E. B. White, MacMillan, 1972

The Psychology of Computer Programming,
G. M. Weinberg, Van Nostrand Reinhold, 1971

The Mythical Man-Month
F. P. Brooks, Jr., Addison-Wesley, 1975

How to Communicate Technical Information,
J. Price & H. Korman, Benjamin/Cummings Publishing Co. Inc. 1993.

Programming in Style

The End

	Programming in Style��George Poirier
	Background
	Definition
	Learn from others
	A sample SAS program (pg. 1 of 2)
	A sample SAS program (pg.2 of 2)
	A sample SAS Program
	Basic Principles of Style
	Readability
	Readability - Comments
	Readability - Comments
	Reabability – Naming Conventions
	Readabiltiy - Code Layout
	Readabiltiy - Code Layout
	Readabiltiy - Code Layout
	Standardization – Code Layout
	 Standardization - Code Layout
	Maintainability
	Maintainability
	Maintainability
	Maintainability
	A sample SAS Program (Improved)
	Improved pgm. (cont’d)
	Improved pgm. (cont’d)
	Improved pgm. (cont’d)
	Improved pgm. (cont’d)
	Improved pgm. (cont’d)
	Improved pgm. (cont’d)
	Improved pgm. (cont’d)
	Improved pgm. (cont’d)
	Improved pgm. (cont’d)
	Implementation
	Implementation
	Additional Reading
	Programming in Style

