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Background

• In IT business since 1982,
• Independent consultant since 1987,
• Worked for many government and private clients,
• Programming in SAS on-and-off since 1982,
• Use mainly Base SAS and SAS/AF.,
• Built over 30 SAS applications (> 1000 pgms) from scratch, 

maintained/enhanced many more,
• From simple “reporting” applications to more complicated 

“code generators” and “specification languages” written in 
SAS.

• Seen many different styles over the years (good and bad).



Definition

• Style: 
– “the distinguishing way in which something is done, said, 

written, made, executed, etc.”,
– “the distinguishing character of a particular type of 

writing”,
– “the way in which a particular literary work is 

expressed”,
– “conventions followed by a publisher in using capitals, 

hyphens, certain spelling, etc.”
(Webster's Encyclopaedic Dictionary)



Learn from others

• One way to improve your programming style is to borrow 
(copy) the “best practices” from many other programmers.

• People actually like it when you borrow their code.
• Copying is one of the best ways to learn,
• Many of the good coding practices and styles have many 

common features.
• Learn to distinguish between the good, the bad, and the ugly
• Principles of style are applicable to all languages, not just SAS

This presentation applies to production code only



A sample SAS program (pg. 1 of 2)

* ---- std-crs pgm;
* 2006-jul-31, jc, fbn const;
%LET Start='01-Sep-2008';
%LET End='31-Dec-2008';
filename Stds 'C:\Students.txt'; filename Tsts 'C:\Tests.txt';filename Scrs 

'C:\TestScores.txt';
filename Crs  'C:\Courses.txt'; filename Tchrs 'C:\Teachers.txt';
data stds; infile stds;
input @1 sid 6. @8 snme $char30. @40 sadrs $char20.
@60 scit $char20. @90 stel $char12. @103 sstat 1.; if sstat=1 or sstat=1;
data Tests; infile Tsts;
input @1 cid $char6. @8 tstid $char8. @17 tstnm $char20. @38 tstdt $char11. @50 tstat 1.;
if tstat=1 & (&start < tstdt < &end);

data tstscrs;infile Scrs;
input @1 cid $char6. @8 tstid $char8. @17 sid 6. @25 ststscr 5.2;
if ststscr=. then ststscr=0;

proc sort data=tstscrs;by cid sid;
data crs; infile crs;
input @1 cid $char6. @8 crsnm $char30. @39 crslocn $char10. @49 tid $char6.
@56 crsenrol 4.; if crsenrol>0;

proc sort data=crs; by tid;
data tchrs; infile tchrs;

input @1 tid $char6. @8 tnm $char30. @40 offno $char5.



A sample SAS program (pg.2 of 2)

@46 Offtel $char12. @59 stat 1.;if stat=1;  proc sort data=tchrs; by tid;
proc summary data=tstscrs; by cid sid; var ststscr;
output out=scav mean=scrsav;
data crsts; merge crs (IN=In1) Tchrs (IN=In2);by tid;if in1 & in2;
proc sort data=stds; BY sid;proc sort data=scav; BY SId;
data SA (KEEP=sid cid snme sadrs scit scrsav);

MERGE stds (IN=In1) Scav (IN=In2); BY sId; IF In1 & In2;
proc sort data=sa;BY cid; proc sort data=crsts;BY cid;
data rcddtls; MERGE sa (IN=In1) crsts (IN=In2); BY cid; if in1 and in2;

proc sort data=rcddtls;by sid cid;
run;
data _null_; set rcddtls; by sid cid; file print;
if first.sid then do;

nocrs=0; tmrks=0; savg=0;
put _page_; put / @15 'STUDENT ID:' @27 sid Z6. / @15 '      NAME:'
@27 snme $char20. / @15 '   ADDRESS:' @27 sadrs $char20. / @27
scit $char20. /// @15 'COURSE #' @25 'COURSE NAME' @55 'MARK' @65 'INSTR-NAME'
/ @15 70*'-';end;

nocrs + 1;tmrks+scrsav;
put / @15 cid $char6. @25 crsnm $char29. @55 scrsav 5.2 @65 tnm $char20.;
if last.sid then do;  savg = ROUND(scrsav/nocrs,0.1);

put / @15 70*'-' / @38 'STUDENT AVERAGE:' @55 savg 4.1 / @15 70*'-';end;run;



A sample SAS Program

• What’s wrong with this program?
– Inadequate comments (re. none),
– Poor naming conventions used,
– Inconsistent or ‘no’ indentation,
– insufficient ‘white space’
– Poor grouping of functionally related code (e.g., sorts and 

merges)
– Misleading code (few KEEPs or RUNs, multiple 

statements per line) 
– Not very readable (good candidate for File 13).



Basic Principles of Style

• Readability
– Use the 1-hour rule

• Maintainability
– Keep maintainability in mind at all times

• Standardization
– All your programs should be setup in a similar fashion



Readability

• Use of comments (style and approach)
• Naming conventions

– variable, file, constants, capitalization, etc. 

• Code organization and layout conventions
– indentation, use of ‘white space’, order of statements,

• Key is readability and comprehension
• The 1-hour rule: 

– If you cannot tell what the program does after a 1 hour review, it 
probably needs to be re-written and/or re-commented.



Readability - Comments

• Use a standard header in every program
– Program name (with version)
– System or Application,
– Purpose, special notes, etc
– Author (very important)
– Change history (if no configuration software is being used)

• Identify every major step in the program
– it should explain ‘step-by-step’ what your program does.

• Identify the end of the program (code).



Readability - Comments

• Keep comments general.
• Make sure the comments and code agree.
• Don’t comment bad code, re-write it.
• Comment tricky code

– explain what the code is supposed to do

• Provide examples in the comments (if needed)
• Don’t keep commented code in the program

– create a new version 



Reabability – Naming Conventions

• Prefixes, suffixes, mixed case vs. same case
• Dataset variables, local variables, constants, flags, 

indicators, counters
• Capitalization of (SAS) keywords, constants, library 

names, etc.
• File naming conventions

– Rename the file if the data changes (Prices, PricesSrtd, 
PricesWgtd,..).



Readabiltiy - Code Layout

VERSION 1: (original code)
if eof=0 then do; grp=ing; dist=‘Ont’; rc+1; if flg_not=0 

then gri=‘N’; end; else do; put @1 ‘n =‘ rc; end;

VERSION 2: (indentation, better, but still bad)
if eof=0 then do;

grp=ing; dist=‘Ont’; rc+1;
if flg_not=0 then
gri=‘N’; end;

else do; 
put @1 ‘n =‘ rc; end;



Readabiltiy - Code Layout

VERSION 3: (DO-END lined up, better names, more space)
IF eof = 0 THEN 
DO;
group  = ingrp; 
dstrct = ‘Ont’; 
reccnt + 1;
IF flag_not = 0 THEN

groupincl = ‘N’;
END;

ELSE 
DO;

put @1 ‘n =‘ reccnt; 
END;



Readabiltiy - Code Layout
VERSION 4: Naming (vars., keywords, etc.), cleaner logic, 

more obvious 
IF _N_ = 1
THEN
District = ‘Ont’;        /* -- All recs. are ‘Ont’ -- */

Group = InGroup; 
RecordCount + 1;

IF IncludeFlag = EXCLUDED         /* -- EXCLUDED = 0 -- */
THEN
GroupIncludedInd = ‘N’;

IF EndOfFile
THEN
PUT @1 ‘Number of Records Read = ‘ RecordCount 7.;



Standardization – Code Layout
• Group code together that goes together (e.g., MERGE)

/* -------------------------------------------------------------------- */
/* STEP 12: MERGE REVISIONS FILE WITH WEIGHTS FILE                      */
/*          TO APPLY WEIGHT FACTOR TO REVISED PRICES.                   */
/* -------------------------------------------------------------------- */
PROC SORT DATA=Revisions

OUT=RevisionsSrtd;
BY QuarterId WeekId;

RUN;

PROC SORT DATA=BasicWeights
OUT=BasicWeightsSrtd;

BY QuarterId WeekId;
RUN;

DATA RevisionsWgtd (KEEP=QuarterId WeekId Price WeightFactor PriceWgtd);
MERGE RevisionsSrtd    (IN=InRevisions)

BasicWeightsSrtd (IN=InBasicWeights);
BY QuarterId WeekId;

IF InRevisions AND InBasicWeights
THEN

PriceWgtd = Price * WeightFactor;
RUN;



Standardization - Code Layout

• Setup each program in your group (team, application, 
project, division, etc.) in the same fashion.
– Standardize common approaches,
– Standard record layouts can be %Included,
– Read and edit input files first, 
– Place outputs in proper order (e.g., Error rpt. before Final rpt.)

• Place all ‘global’ %INCLUDEs in the same place 
– e.g., included macros

• Setup each data step in a similar fashion and order
– INFILE, FILE, SET, INPUT, RETAIN, etc.



Maintainability

• Use consistent indentation of code  
– lineup DO; and END; statements

• Format your program to make it easier to read and 
understand.
– Even for simple maintenance tasks, re-format the program so it will be 

easier to maintain in the future.

• Break complicated equations into simpler steps,
• Use standard SAS functions, don’t write your own

– e.g, VERIFY, INDEX



Maintainability

• Write out input parameters
– to the log or to a more permanent file

• Edit your input file for unexpected values 
– Don’t let your programs run with garbage.

• Check for developer errors 
– Invalid values of internal codes, etc.

• Use the simplest, most appropriate language feature 
for the task
– SELECT vs. IF-THEN-ELSE

• Print summary statistics for each major data step



Maintainability

• Use %INCLUDEs to re-use standard pieces of code
– Record layouts, report headers, etc.
– Like LEGO

• Use Macros to turbo charge your programs
– Allows others to reuse complicated code that they may not understand,
– Use them when appropriate 

• Use LINK/RETURN like subroutines 
– Don’t use it without the Return

• Ensure Macros and subroutines only do 1 thing,
• Write code to trap division by zero errors, missing values, etc.



Maintainability

• Many coding problems start with the format of the 
data
– Input and output files

• Change the format of the data if you can
– Don’t write complicated code to process badly designed data files,
– see if the files can be changed first 

• Sometimes it’s better to reformat the data on input to 
make the program simpler
– Depends on the size and purpose of the program.



A sample SAS Program (Improved)
/* -------------------------------------------------------------------------- */
/*                                                                            */
/* PROGRAM: SCHL_RPTS_REPORT_CARDS_V2_1.SAS                                   */
/*                                                                            */
/* SYSTEM : STUDENT MARKS AND REPORTS APPLICATION                             */
/*                                                                            */
/* PURPOSE: TO PRINT STUDENT REPORT CARDS FOR A SPECIFIC SEMESTER             */
/*                                                                            */
/* NOTES  : - ONLY CURRENT F/T AND P/T STUDENTS ARE SELECTED                  */
/*          - MISSED TESTS ARE GIVEN A MARK OF ZERO                           */
/*                                                                            */
/* USAGE  : YOU MUST PROVIDE THE CORRECT SEMESTER START AND END DATES TO      */
/*          ENSURE THE CORRECT TESTS SCORES ARE SELECTED.                     */
/*                                                                            */
/* AUTHOR : Joseph Consultant                                                 */
/*                                                                            */
/* -------------------- MODIFICATIONS --------------------------------------- */
/* JC  - Joseph Consultant, Fly-by-Night Software Inc.                        */
/* GLP - George L. Poirier, Autumn Group Inc.                                 */
/*                                                                            */
/*                                                                            */
/* YY-MM-DD INIT VER ---------------- DESCRIPTION --------------------------- */
/* 06-07-31 JC   1.0 Created.                                                 */
/* 08-11-09 GLP  2.0 Updated and Reformatted to make it easier to read        */
/* 08-11-10 GLP  2.1 Fixed bug with Student Avg. not displaying correct value */
/*                                                                            */
/* -------------------------------------------------------------------------- */



Improved pgm. (cont’d)

/* ------ SEMESTER START AND END DATES (FRMT = DD-MMM-YYYY) ----------------- */
%LET SemesterStartDt ='01-Sep-2008';
%LET SemesterEndDt   ='31-Dec-2008';

/* -------------------------------------------------------------------------- */
/* EXTERNAL FILE NAME DECLARATIONS                                            */
/*                                                                            */
/* -------------------------------------------------------------------------- */
FILENAME Students 'C:\Students.txt';
FILENAME Tests    'C:\Tests.txt';
FILENAME Scores   'C:\TestScores.txt';
FILENAME Courses  'C:\Courses.txt';
FILENAME Teachers 'C:\Teachers.txt';



Improved pgm. (cont’d)
/* -------------------------------------------------------------------------- */
/* STEP 1: READ STUDENTS FILE                                                 */
/*         RETRIEVE NAME AND ADDRESS                                          */
/*                                                                            */
/*         VALID VALUES OF StudentStatus:                                     */
/*                       1 = Current FT,                                      */
/*                       2 = Current PT,                                      */
/*                       3 = Dropped Out,                                     */
/*                       4 = Graduated                                        */        
/* -------------------------------------------------------------------------- */
DATA Students (KEEP=StudentId StudentName StudentAddress StudentCity);

INFILE Students;

INPUT @1   StudentId             6.
@8   StudentName     $CHAR30.
@40  StudentAddress  $CHAR20.
@60  StudentCity     $CHAR20.
@90  StudentPhone    $CHAR12.
@103 StudentStatus         1.;

IF StudentStatus IN(1 2);   
RUN;



Improved pgm. (cont’d)

/* -------------------------------------------------------------------------- */
/* STEP 6: CALCULATE THE STUDENTS AVERAGE MARK PER COURSE                     */
/*         (THE TEST SCORES ALL HAVE EQUAL WEIGHT)                            */
/* -------------------------------------------------------------------------- */
PROC SORT DATA=TestScores

OUT=TestScoresSrtd;
BY CourseId StudentId;

RUN;

PROC SUMMARY DATA=TestScoresSrtd;
BY CourseId StudentId;
VAR StudentTestScore;
OUTPUT OUT=StudentCourseAvgs

MEAN=StudentCourseAvg;
RUN;



Improved pgm. (cont’d)
/* -------------------------------------------------------------------------- */
/* STEP 7: GET NAME OF TEACHER FOR EACH COURSE                                */
/*                                                                            */
/* -------------------------------------------------------------------------- */
PROC SORT DATA=Courses

OUT=CoursesSrtd;
BY TeacherId;

RUN;

PROC SORT DATA=Teachers
OUT=TeachersSrtd;

BY TeacherId;
RUN;

DATA CourseTeachers (KEEP=CourseId CourseName TeacherName OfficePhone);

MERGE CoursesSrtd  (IN=InCourses)
TeachersSrtd (IN=InTeachers);

BY TeacherId;

IF InCourses AND InTeachers;

RUN;



Improved pgm. (cont’d)
/* -------------------------------------------------------------------------- */
/* STEP 8: MATCH STUDENT NAMES TO COURSE MARKS                                */
/*                                                                            */
/* -------------------------------------------------------------------------- */
PROC SORT DATA=Students

OUT=StudentsSrtd;
BY StudentId;

RUN;

PROC SORT DATA=StudentCourseAvgs
OUT=StudentCourseAvgsSrtd;

BY StudentId;
RUN;

DATA StudentAverages (KEEP=StudentId      CourseId    StudentName
StudentAddress StudentCity StudentCourseAvg);

MERGE StudentsSrtd          (IN=InStudents)
StudentCourseAvgsSrtd (IN=InCourseAvgs);

BY StudentId;

IF InStudents AND InCourseAvgs;

RUN;



Improved pgm. (cont’d)

/* -------------------------------------------------------------------------- */
/* STEP 9: ADD COURSE AND TEACHER INFORMATION TO STUDENT COURSE MARKS         */
/*         THIS FILE WILL CONTAIN ALL DATA REQUIRED FOR THE REPORT CARD       */
/* -------------------------------------------------------------------------- */
PROC SORT DATA=StudentAverages

OUT=StudentAvgsSrtd;
BY CourseId;

RUN;

PROC SORT DATA=CourseTeachers
OUT=CourseTeachersSrtd;

BY CourseId;
RUN;

DATA ReportCardDetails (KEEP=StudentId StudentName StudentAddress StudentCity
CourseId CourseName TeacherName StudentCourseAvg);

MERGE StudentAvgsSrtd    (IN=InStudentAvgs)
CourseTeachersSrtd (IN=InCourseTeachers);

BY CourseId;

IF InStudentAvgs AND InCourseTeachers;

RUN;



Improved pgm. (cont’d)

/* -------------------------------------------------------------------------- */
/* STEP 10: PRINT REPORT CARDS                                                */
/*                                                                            */
/* -------------------------------------------------------------------------- */
PROC SORT DATA=ReportCardDetails

OUT=ReportCardsSrtd;
BY StudentId CourseId;

RUN;



Improved pgm. (cont’d)
DATA _NULL_;

SET ReportCardsSrtd;
BY StudentId CourseId;

RETAIN NumCourses 
TotalMarks 0;

/* ----- INITIAL PROCESSING (FOR EACH NEW STUDENT) ----- */
IF FIRST.StudentId
THEN

DO;
NumCourses = 0;
TotalMarks = 0;
StudentAvg = 0;

PUT _PAGE_;
PUT / @15 'STUDENT ID:' StudentId           Z6.

/ @15 '      NAME:' StudentName    $CHAR20.
/ @15 '   ADDRESS:' StudentAddress $CHAR20.
/ @27               StudentCity    $CHAR20.

/// @15 'COURSE #'
@25 'COURSE NAME'
@55 'MARK'
@65 'INSTR-NAME'

/ @15 70*'-';
END;



Improved pgm. (cont’d)
/* ----- MAIN PROCESSING (EVERY COURSE RECORD) --------- */
NumCourses + 1;
TotalMarks + StudentCourseAvg;

PUT / @15 CourseId          $CHAR6.
@25 CourseName       $CHAR29.
@55 StudentCourseAvg       5.2
@65 TeacherName      $CHAR20.;

/* ----- FINAL PROCESSING (PRINT OVERALL AVERAGE) ----- */
IF LAST.StudentId
THEN

DO;
StudentAvg = ROUND(TotalMarks / NumCourses, 0.1);
PUT / @15 70*'-'

/ @38 'STUDENT AVERAGE:‘
@55 StudentAvg   4.1

/ @15 70*'-';
END;

RUN;

/* ------------------- END OF PROGRAM --------------------------------------- */



Implementation 

• Team Effort;
– Cannot determine a style by yourself (unless you work alone).
– What is readable to you is junk to someone else
– No one style is ideal for everyone. 
– Each group should adopt their own style and enforce it.
– Don’t let the ‘lowest common denominator’ prevail

• Only way to get better is to conduct code/style reviews
– You want other people’s input

• Most coding problems are discovered in reviews
– Many are design based

• Don’t stop with your first attempt 
– It’s an on-going process



Implementation 

• Benefits; 
– Simpler and faster coding,
– Easier testing and maintenance,
– Easier Impact assessments,
– Easier Estimating
– Better documentation

• can write a “code scanner” for comments
– Raises everyone’s skill level
– Allows better use of programming resources
– Increased productivity
– Less expensive development



Additional Reading
The Elements of Programming Style

B. W. Kernighan & P. J. Plauger, Addison-Wesley, 1978

The Elements of Style,
W. Strunk, Jr. & E. B. White, MacMillan, 1972

The Psychology of Computer Programming,
G. M. Weinberg, Van Nostrand Reinhold, 1971

The Mythical Man-Month
F. P. Brooks, Jr., Addison-Wesley, 1975

How to Communicate Technical Information,
J. Price & H. Korman, Benjamin/Cummings Publishing Co. Inc. 1993.



Programming in Style

The End
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