
Questions & Answers
OASUS Fall 2006 General Meeting

Question #1 How do I access flat files in Enterprise Guide?

To access flat files in Enterprise Guide 4.1, you have to first convert those files into a format that
SAS can use to process the data. To do so, we propose three approaches.

1) Import Data Task

The Import Data task allows you to create SAS data sets from flat files (but also from PC-based
database files). The Import Data task generates DATA step code. Various options can be set for
each file to import:

Region to import

 1

Format of the text

Column specifications.

 2

2) Data File created with code

Enterprise Guide provides a facility to write and execute any SAS programs. Therefore, it is
possible to write a DATA step by hand to achieve the same results. For example:

3) DATA step view

This is similar to approach #2, but is more dynamic. A DATA step view stores only the
description of the data to output in the form of a DATA step. When a view is accessed, the
associated DATA step gets executed. To access a flat file, all is required is to open a
previously defined DATA step view. The advantage of a view is that the most current data is
always accessed.

 3

Question #2 Can I assign an array to a macro variable?
An array is a set of elements that can be processed as a group. Typically, you would refer to
elements of an array by the array name and a subscript. Although the macro language does not
support arrays, it is possible to mimic arrays using different techniques. Two popular techniques
are discussed here.

Technique #1: List of values in a macro variable.

This technique stores a list of values separated with some character in a single macro variable.
The advantage of this approach is that the array elements are hold into one and only one
variable. However, the array is limited by the maximum size macro variables can take (in SAS
9.1.3 for Windows, 64k is the current storage limit for in-memory macro variables) and care must
be taken to break and scan the elements.

The following example illustrates the techniques:

Data Structure

&ARRAY 10 20 30 40 50 60

&
A
R
R
A
Y
,1

&
A
R
R
A
Y
,2

&
A
R
R
A
Y
,3

&
A
R
R
A
Y
,4

&
A
R
R
A
Y
,5

&
A
R
R
A
Y
,6

%SCAN()

Results

array element 1 = 10
array element 2 = 20
array element 3 = 30
array element 4 = 40
array element 5 = 50
array element 6 = 60

Macro

/* This macro list each element of a macro array
implemented as a list of values on the SAS log */
%macro ListArray(array);

 %let i=1;

 %do %while (%scan(&array,&i) NE %str());
 %put array element &i = %scan(&array,&i);
 %let i=%eval(&i+1);
 %end;

%mend;
%ListArray(10 20 30 40 50 60);

 4

References

Carpenter, A. (2005), “Storing and Using a List of Values in a Macro Variable”, Proceedings of the Thirtieth
Annual SAS Users Group International Conference, 028-30.

Technique #2: List of macro variables.

Like arrays in the DATA step, this approach utilizes one variable per array element. Each variable
that makes up an array follows a common naming convention so that the array index becomes
embedded in the macro variable name (for example &myvar1 &myvar2 &myvar2). A special
macro variable is also required to indicate the number of elements in the array (for example
&myvarn). The following figure illustrates the concept:

Data Structure

&
M
Y
V
A
R
1

1
0

&
M
Y
V
A
R
2

2
0

&
M
Y
V
A
R
3

3
0

&
M
Y
V
A
R
4

4
0

&
M
Y
V
A
R
5

5
0

&
M
Y
V
A
R
6

6
0

&MYVARn 6

Macro

/* This macro list each element of a macro array
implemented as a list of macro variables on the SAS log
*/

%macro ListArray(Array, Dim);
 %do i=1 %to &Dim;
 %put array element &i = &&&Array&i;
 %end;
%mend;

%let MyArray1=10;
%let MyArray2=20;
%let MyArray3=30;
%let MyArray4=40;
%let MyArray5=50;
%let MyArray6=60;
%let MyArrayDim=6;

%ListArray(MyArray,&MyArrayDim);

Results

array element 1 = 10
array element 2 = 20
array element 3 = 30
array element 4 = 40
array element 5 = 50
array element 6 = 60

 5

The advantage of this approach is that the array element can hold almost anything and is only
limited to the amount of memory available to the SAS session. The main disadvantage is that the
number of macro variables can become very large.

References

Carpenter, A. (), “Resolving and Using &&var&i Macro Variables”, Proceedings of the 22nd Annual SAS
Users Group International Conference, 077-22.

Fehd, Ronald (2004), “Array: Construction and Usage of Arrays of Macro Variables”, Proceedings
of the 29th Annual SAS Users Group International Conference, 070-29.

Clay, Ted (2006), “Tight Looping With Macro Arrays”, Proceedings of the 31st Annual SAS Users
Group International Conference, 040-31.

 6

Question #3 How to run SAS in batch on a workstation when all
the programs and the data files are on a remote server?

First, to run SAS in batch, you have to invoke the SAS executable using a command with the
following notation:

"SAS Executable"
 -CONFIG "<location of SAS Config file>"
 -SYSIN “<location of SAS program to run>"
 -LOG "<location of SAS log>"

Second, you use the SYSIN option to specify the location of a SAS program to run which can be
anywhere on the network as long as it is accessible by SAS. Note that there are many other
options that can be specified on the command line.

The following example is for the Windows platform and invokes SAS in batch to run a program
stored on a shared drive:

"C:\Program Files\SAS\SAS 9.1\sas.exe"
 -CONFIG "C:\Program Files\SAS\SAS 9.1\nls\en\SASV9.CFG"
 -SYSIN "\\filer10\team9\sas\test.sas"
 -LOG "c:\temp\mylog.log"

Finally, accessing data files can be done by providing SAS with a fully qualified file name where
the data resides. Typically, this is done with FILENAME statement. In the case of remote files,
you have to provide the location on the network where the file resides. In Windows, you would
need network drive or, preferably, a fully qualified name that follows UNC conventions.

For example:

FILENAME myfile "\\filer10\team9\data\test.txt" ;

 7

Question #4 How to export 2 SAS variables in Excel into one
column with a character to separate the two?

The first step is to concatenate the two variables using a DATA step. The following example
implements a solution with the CATX function.

The second step is to export the resulting dataset to an Excel spreadsheet. In the
following example, this is achieved using the EXPORT procedure.

DATA test;

 set sashelp.class;
 sexname= catx('-',sex,name);

run;

PROC EXPORT DBMS=EXCEL DATA= test
 OUTFILE= "c:\temp\textexcel.xls" REPLACE;
RUN;

 8

Question #5 How to minimise space on SAS Data Set?

There are several techniques to reduce the space on a SAS data set. We are showing here
three techniques that are particularly effective. They can be used alone or in combination
depending on the situation. In all the examples used to illustrate those techniques, we use
a data set called BIG created as followed:

1) Turn compression on

Using the COMPRESS= system or data set option, any SAS data set created on disk will
be compressed. SAS data set compression can greatly reduce the size of SAS data sets.
To use the COMPRESS= system or data set option, set the option to either "YES" or
"BINARY". COMPRESS=YES uses an algorithm that works better with SAS data sets
that primarily have character variables. On the other hand, COMPRESS=BINARY uses
a different algorithm that works better with SAS data sets that have many variables
including many numeric variables.

Another option to use with COMPRESS= is REUSE=. Specifying this option allows SAS
to reuse space within the compressed SAS data set that has been freed by deleting an
observation. Otherwise, SAS cannot reclaim the deleted space.

The following example shows how to compress an existing data set. Running this
example on the Windows platform shows a 63% compression rate.

data BIG_COMPRESSED (COMPRESS=YES);

set BIG;
run;

data BIG;
 do i=1 to 10000;
 code1=1;
 code2=2;
 code3=3;
 code4=4;
 code5=5;
 texta="textaaaaaaaaaaaaa";
 textb="textbbbbbbbbbbbbb";
 textc="textccccccccccccc";
 textd="textddddddddddddd";
 texte="texteeeeeeeeeeeee";
 text=cat(texta,textb,textc,textd,texte);
 output;
 end;
run;

 9

2) Reduce the length of a variable

Reducing the length of a variable to just what is needed to store the data can be done
using the LENGTH statement. It is particularly important in the case of numeric variables
because SAS by default uses a length of 8 bytes, but you may need much less to represent
numbers in your application. With character variables, SAS may be able to derive the
optimum length prior to running the DATA step. If not, SAS will use a length of 200
characters which may be way too much. Again, using the LENGTH to specify the
maximum number of bytes needed may yield very interesting results.

The following example optimises the length of 5 numeric variables and of one character
variable that would be otherwise assigned a length of 200. This yields a reduction in
storage requirement of 66%.

data BIG_OPTIMISED;
 length code1 code2 code3 code4 code5 3 ;
 length text $100;
 set big;
run;

3) Retain only the required variables

Because SAS by default outputs all variables, it is easy to end up with way too many
variables stored in a data set than is required. It is recommended to delete any variables
that you do not need. Use the data set DROP= option to identify which variables to delete
or use the KEEP= option to identify which variables to retain. Both will accomplish the
same thing, one will be easier to use than the other depending on the number of the
existing variables you want to eliminate. Deleting unneeded variables can have a
dramatic impact on the size of the SAS data set. In the following example, dropping 5
character variables reduces the storage requirements by 30%.

data BIG_REDUCED (DROP=i texta textb textc textd texte);
 set BIG;
run;

 10

References

Lafler, Kirk Paul (2000), “Efficient SAS® Programming Techniques”, Proceedings of the 25th
Annual SAS Users Group International Conference, 146-25.

Smith, Curtis A. (2000), “By Hook or By Crook: Overcoming Resource Limitations”, Proceedings
of the 25th Annual SAS Users Group International Conference, 291-25.

Smith, Curtis A. (2000), “Programming Tricks For Reducing Storage And Work Space”,
Proceedings of the 27th Annual SAS Users Group International Conference, 23-27.

 11

	Questions & Answers OASUS Fall 2006 General Meeting
	Question #1 How do I access flat files in Enterprise Guide?
	1) Import Data Task
	 2) Data File created with code
	3) DATA step view

	 Question #2 Can I assign an array to a macro variable?
	Technique #1: List of values in a macro variable.
	References
	Technique #2: List of macro variables.
	References

	 Question #3 How to run SAS in batch on a workstation when all the programs and the data files are on a remote server?
	Question #4 How to export 2 SAS variables in Excel into one column with a character to separate the two?
	 Question #5 How to minimise space on SAS Data Set?
	1) Turn compression on
	2) Reduce the length of a variable
	3) Retain only the required variables
	 References

